PENGARUH PEMBERIAN KOMPOS TERHADAP KAPASITAS AIR TANAH TERSEDIA DAN PERTUMBUHAN TOMAT (SOLANUM LYCOPERSICUM L.) PADA TANAH LEMPUNG BERPASIR
Article History
Submited : July 9, 2021
Published : April 30, 2021
Kompos mempunyai peranan yang sangat penting untuk mempertahankan kualitas sifat fisika tanah yang ideal bagi pertumbuhan tanaman. Tujuan penelitian adalah untuk menentukan pengaruh pemberian kompos terhadap kapasitas air tanah tersedia dan pertumbuhan tanaman tomat. Penelitian yang disusun berdasarkan rancangan acak kelompok dilaksanakan di rumah kaca Fakultas Pertanian, Universitas Tadulako. Penelitian terdiri dari 6 perlakuan yang diulang sebanyak 3 kali. Secara berturut-turut perlakuan penelitian terdiri dari P0 (0 ton ha-1), P1 (5 ton ha-1), P2 (10 ton ha-1), P3 (15 ton ha-1), P4 (20 ton ha-1) dan P5 (25 ton ha-1). Hasil penelitian menunjukkan bahwa kompos dapat meningkatkan ketersediaan air tanah dan pertumbuhan tomat pada tanah lempung berpasir.
Ankenbauer, K. J., & Loheide, S. P. (2017). The effects of soil organic matter on soil water retention and plant water use in a meadow of the Sierra Nevada, CA. Hydrological Processes, 31(4), 891-901
Basso, A. S., Miguez, F. E., Laird, D. A., Horton, R., & Westgate, M. (2013). Assessing potential of biochar for increasing water‐holding capacity of sandy soils. Gcb Bioenergy, 5(2), 132-143
Bonfante, A., Basile, A., & Bouma, J. (2020). Exploring the effect of varying soil organic matter contents on current and future moisture supply capacities of six Italian soils. Geoderma, 361, 114079
Bouajila, K., & Sanaa, M. (2011). Effects of organic amendments on soil physico-chemical and biological properties. J. Mater. Environ. Sci, 2(1), 485-490.
Brown, S., & Cotton, M. (2011). Changes in soil properties and carbon content following compost application: Results of on-farm sampling. Compost Science & Utilization, 19(2), 87-96.
Eden, M., Gerke, H. H., & Houot, S. (2017). Organic waste recycling in agriculture and related effects on soil water retention and plant available water: a review. Agronomy for Sustainable Development, 37(2), 11.
Frouz, J. (2018). Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma, 332, 161-172.
Głąb, T., A. Żabiński, U. Sadowska, K. Gondek, M. Kopeć, M. Mierzwa-Hersztek, and S. Tabor. (2018). Effects of co-composted maize, sewage sludge, and biochar mixtures on hydrological and physical qualities of sandy soil. Geoderma 315:27–35.
Hudson, B. D. (1994). Soil organic matter and available water capacity. Journal of soil and water conservation, 49(2), 189-194
Islam, M. A., Islam, S., Akter, A., Rahman, M. H., & Nandwani, D. (2017). Effect of organic and inorganic fertilizers on soil properties and the growth, yield and quality of tomato in Mymensingh, Bangladesh. Agriculture, 7(3), 18
Jiménez‐Morillo, N. T., González‐Pérez, J. A., Jordán, A., Zavala, L. M., de la Rosa, J. M., Jiménez‐González, M. A., & González‐Vila, F. J. (2016). Organic matter fractions controlling soil water repellency in sandy soils from the Doñana National Park (Southwestern Spain). Land Degradation & Development, 27(5), 1413-1423
Jindo, K., Martim, S. A., Navarro, E. C., Pérez-Alfocea, F., Hernandez, T., Garcia, C., ... & Canellas, L. P. (2012). Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant and Soil, 353(1-2), 209-220
Kobierski, M., K. Kondratowicz-Maciejewska, M. Banach-Szott, P. Wojewódzki, and J. M. Peñas Castejón. (2018). Humic substances and aggregate stability in rhizospheric and non-rhizospheric soil. Journal of Soils and Sediments 18(8):2777–2789.
Lal, R. (2020). Soil organic matter content and crop yield. Journal of Soil and Water Conservation, 75(2), 27A-32A
Leelamanie, D. A. L., & Karube, J. (2009). Effects of hydrophobic and hydrophilic organic matter on the water repellency of model sandy soils. Soil Science and Plant Nutrition, 55(4), 462-467
Liu, B., Gumpertz, M. L., Hu, S., & Ristaino, J. B. (2007). Long-term effects of organic and synthetic soil fertility amendments on soil microbial communities and the development of southern blight. Soil Biology and Biochemistry, 39(9), 2302-2316.
Minasny, B., & McBratney, A. B. (2018). Limited effect of organic matter on soil available water capacity. European Journal of Soil Science, 69(1), 39-47
Mulumba, L. N., & Lal, R. (2008). Mulching effects on selected soil physical properties. Soil and Tillage Research, 98(1), 106-111
Oades, J. M. (1984). Soil organic matter and structural stability: mechanisms and implications for management. Plant and soil, 76(1), 319-337.
Olness, A., & Archer, D. (2005). Effect of organic carbon on available water in soil. Soil Science, 170 (2), 90-101
Plante, A. F., Conant, R. T., Stewart, C. E., Paustian, K., & Six, J. (2006). Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions. Soil Science Society of America Journal, 70(1), 287-296
Ramos, M. C. (2017). Effects of compost amendment on the available soil water and grape yield in vineyards planted after land levelling. Agricultural Water Management 191:67–76
Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M., & Bloodworth, H. (2003). Effect of soil organic carbon on soil water retention. Geoderma, 116(1-2), 61-76.
Roghanian, S., Hosseini, H. M., Savaghebi, G., Halajian, L., Jamei, M., & Etesami, H. (2012). Effects of composted municipal waste and its leachate on some soil chemical properties and corn plant responses. International Journal of agriculture: Research and review, 2(6), 801-814.
Smith, A.L., A.G. Bengough, C. Engels, M. Van Noordwijk, S. Pellerin, and S.C. Van de Geijn. (2000). Root methods, a handbook. CAB International, Wellingford, UK, pp 20-24.
Vogelmann, E. S., Reichert, J. M., Prevedello, J., Consensa, C. O. B., Oliveira, A. É., Awe, G. O., & Mataix-Solera, J. (2013). Threshold water content beyond which hydrophobic soils become hydrophilic: The role of soil texture and organic matter content. Geoderma, 209, 177-187