Pengaruh Rizobakteri Penghasil Indole-3-Acetic Acid Terhadap Perkecambahan Biji Tanaman Padi (Oryza sativa L.)
Article History
Submited : March 15, 2021
Published : August 20, 2021
Rizobakteri penghasil Indole-3-Acetic Acid (IAA) berpotensi digunakan sebagai agen biostimulan tanaman padi untuk mendukung pertanian berkelanjutan. Penelitian ini bertujuan untuk menganalisis pengaruh rizobakteri penghasil IAA terhadap perkecambahan tanaman padi (Oryza sativa L.). Isolat rizobakteri penghasil IAA yang digunakan dalam penelitian ini telah diisolasi sebelumnya dengan kode KP2, KP6, KP9 dan KP14. Biji padi IR64 disterilisasi permukaannya dengan menggunakan larutan NaOCl 5%. Biji kemudian direndam dalam suspensi isolat dan dikecambahkan dalam petri dish steril. Analisis hasil penelitian dilakukan dengan menggunakan metode one-way analysis of variance (ANOVA) dan uji lanjut yaitu duncan’s multiple range test (DMRT). Hasil penelitian menunjukkan bahwa prosentase perkecambahan tertinggi adalah kelompok perlakuan KP6 yaitu 98,67 ± 1,15 %. Perlakuan dengan isolat KP2 memiliki pengaruh terbesar terhadap panjang tunas yaitu 5,76 ± 0,77 cm. Panjang tunas kecambah dengan perlakuan KP2 dan KP6 berbeda nyata terhadap kontrol. Ukuran panjang akar tertinggi adalah 9,49 ± 0,41 cm dengan perlakuan isolat KP9. Panjang total kecambah dan indeks vigor pada semua perlakuan berbeda nyata dibandingkan kontrol dengan nilai tertinggi berturut-turut yaitu 9,48 ± 0,33 cm dan 935 ± 74 pada kelompok perlakuan KP2. Kesimpulan penelitian ini adalah bahwa isolat rizobakteri penghasil IAA pada penelitian ini berpengaruh positif secara signifikan terhadap perkecambahan tanaman padi pada parameter panjang total dan indeks vigor kecambah padi.
Bal, H.B., Nayak, L., Das, S., Adhya, T.K. 2013. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil.
Cappellari LD, Santoro MV, Schmidt A, Gershenzon J, Banchio E. 2019. Inductionof essential oil production in Mentha x piperita by plant growth promotingbacteria was correlated with an increase in jasmonate and salicylate levelsand a higher density of glandular trichomes. Plant Physiol Bioch.141:142–53.
Etesami, H., Emami, S., Alikhani, H.A. 2017. Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects a review. JSoil Sci Plant Nut. 17(4):897-911.
Gu, B.J., Ge, Y., Ren, Y., Xu, B., Luo, W.D., Jiang, H., Gu, B.H., Chang J. 2012. Atmospheric reactive nitrogen in China: sources, recent trends, and damage costs. Environ Sci Technol. 46 (17): 9420-9427.
Haque, M.M., Mosharaf, M.K., Khatun, M., Haque, M.A., Biswas, M.S., Islam, M.S., Islam, M.M., Shozib, H.B., Miah, M.M.U., Molla, A.H., Siddiquee, M.A. 2020. Biofilm Producing Rhizobacteria With Multiple Plant Growth-Promoting Traits Promote Growth of Tomato Under Water-Deficit Stress.
Front. Microbiol. 11: 1-25.
Iqbal, M., Wagi, S., Ahmed, A. 2017. Phyllospheric bacterial treatments improve growth in Helianthus annuus L. RADS Journal of Biological Research and Applied Sciences. 9(1) : 2521-8573.
Jegathambigai, V., Wijeratnam, R.S.W., Wijesundera, R.L.C. 2009. Trichoderma as a seed treatment to control Helminthosporium leaf spot disease of Chrysalidocarpus lutescens. World J. Agric. Sci. 5: 720–728.
Judd, L.A., Jackson, B.E., Fonteno, W.C. 2015. Advancements in root growthmeasurement technologies and observation capabilities for container-grown plants. Plants 4(3):369–392.
Karmakar, R., Das, I., Dutta, D., Rakshit, A. 2016. Potential effects of climate change on soil properties: a review. Sci. Intl. 4: 51–73.
Lavakush, J.Y., Verna, P. 2012. Isolation and characterization of effective plant growth promoting rhizobacteria from rice rhizosphere of Indian soil. Asian J. Biol. Sci.
Lin L, Li Z, Hu C, Zhang X, Chang S, Yang L, An Q. Plant growth-promotingnitrogen-fixing Enterobacteria are in association with sugarcane plantsgrowing in Guangxi, China. Microbes Environ. 2012;27(4):391–8.13.
Matsuda, R., Handayani, M.L., Sasaki, H., Takechi, K., Takano, H., Takio, S. 2018. Production of indoleacetic acid by strains of the epiphytic bacteria Neptunomonas spp. isolated from the red alga Pyropia yezoensis and the seagrass Zostera marina. Archives of Microbiology. 200(2):255–265.
Mohammad, Y. 2014. Enhancement of seed germination and seedling vigor of wheat (Triticum aestivum L.) following PGPR treatments. Scholars Journal of Agriculture and Veterinary Sciences. 1 (3) : 121-124
Mohite, B. 2013. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Sciences and Plant Nutrition 13: 638-649.
Peace, N. 2020. Impact of Climate Change on Insects, Pest, Diseases and Animal Biodiversity. Int J Environ Sci Nat Res. 23(5): 151-153.
Pieruzzi, F.P., Dias, L.L.C., Balbuena, T.S., Santa-Catarina, C., dos Santos, A.L.W., Floh, E.I.S. 2011. Polyamines, IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm). Ann Bot. 108:337 345.
Romero-Perdomo, F., Abril, J., Camelo, M., Moreno-Galván, A., Pastrana, I., Rojas-Tapias, D., Bonilla, R. 2017. Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization. Rev Argent Microbiol. 49(4): 377-383.
Saengsanga, T. 2018. Isolation and Characterization of Indigenous Plant Growth Promoting Rhizobacteria and Their Effects on Growth at the Early Stage of Thai Jasmine Rice (Oryza sativa L. KDML105). Arabian Journal for Science and Engineering. 43:3359-3369.
Saikia, J., Sarma, R. K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V. K., et al. 2018. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of northeast India. Sci. Rep. 8:3560.
Sapsirisopa, S., Chookietwattana, K., Maneewan, K., Khaengkhan,
P. 2009. Effect of salt-tolerant Bacillus inoculum on rice KDML 105 cultivated in saline soil. As. J. Food Ag Ind. 69-74.
Sulochana, M.B., Jayachandra, S.Y., Kumar, S.A., Parameshwar, A., Reddy, K.M., Dayanand, A. 2014. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25. Appl Biochem Biotech. 174(1): 297-308
Sun, G., Yao, T., Feng, C., Chen, L., Li, J., Wang, L. 2017. Identification and biocontrol potential of antagonistic bacteria strains against Sclerotinia sclerotiorum andtheir growth-promoting effects on Brassica napus. Biol Control. 104: 35-43.
Suprapta, D.N., Maulina, N.M.I., Khalimi, K. 2014. Effectiveness of Enterobacter cloacae to promote the growth and increase the yield of rice. J. Biol. Agric. Health. 4: 44-50.
Timmusk, S. 2017. Perspectives and challenges of microbial application for crop improvement. Front. Plant Sci. 8 (49).
Vacheron, J., Desbrosses, G., Bouffaud, M.L., Touraine, B., Moënne-Loccoz, Y., Muller, D., et al. 2013. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4:356.
Wahyudi, A.T., Astuti, R.P., Widyawati, A., Meryandini, A., & Nawangsih, A.A. 2011. Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. J Microbiol Antimicrobiol. 3: 34-40.
Zaheer, A., Malik, A., Sher, A., Qaisrani, M.M., Mehmood, A., Khan, S.U., Ashraf, M.U., Mirza, Z., Karim, S., Rasool, M. 2019. Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi J Biol Sci. 26(5): 1061–1067.